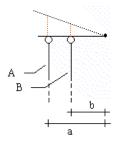
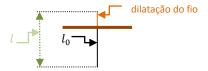
Problema 1: A fábrica do ínvar

Nota inicial: Escrevemos este texto com o objetivo de motivar espíritos vivos do secundário. A interpretação do esboço do Professor é nossa pelo que qualquer desvirtuação da sua ideia é da nossa responsabilidade.



Suponha o leitor/a que l(t) é o comprimento de um fio de coeficiente de dilatação α à temperatura t e que l_0 é o comprimento desse fio à temperatura inicial t_0 .



Se a temperatura variar de dt a variação do comprimento do fio é de:

$$dl = \alpha l dt$$

Então:
$$\frac{dl}{dt} - \alpha l = 0 \text{ com } l(t_0) = l_0$$

Trata-se de uma equação em que a incógnita é uma função; como aparecem derivadas chama-se diferencial.

O leitor pode verificar, por substituição direta, que são elementos da solução as funções:

$$l = Ce^{\alpha t}$$

onde C é uma constante. De fato prova-se que este conjunto é a solução.

A condição inicial $l(t_0) = l_0$ permite-nos determinar C:

$$C = l_0 e^{-\alpha t_0}$$
 e portanto $l = l_0 e^{\alpha (t - t_0)}$

Se sabe rudimentos de Cálculo Diferencial sabe que para valores de $\alpha(t-t_0)$ muito pequenos¹:

$$e^{\alpha(t-t_0)} \sim 1 + \alpha(t-t_0)$$

Ora os valores de \propto são da ordem de 10^{-5} e como as variações de temperatura não excedem os 100 graus $\alpha(t-t_0)$ é da ordem de 10^{-3} logo, com erro² muito pequeno podemos tomar: $l \sim l_0 + l_0 \alpha(t-t_0)$.

Suponhamos agora que à temperatura t_0 os fios têm o mesmo comprimento como o esboço do Professor sugere.

O quociente dos incrementos nos comprimentos dos fios quando a temperatura sobe de t_0 para t, iguais a $l_0\alpha(t-t_0)$, é então de $\frac{\alpha_1}{\alpha_2}$ onde os alfas são os coeficientes de dilatação dos fios.

Como é constante, independente de t, o Teorema de Thales permite-nos concluir que as retas que unem as extremidades dos fios passam pelo mesmo ponto da travessa e que $\frac{\alpha_1}{\alpha_2} = \frac{a}{b}$.

Agora fica claro que para um matemático o tal ponto que não se move não existe, e portanto a afirmação foi precipitada, mas a sua deslocação com a temperatura é tão pequena que não consegue medir-se ou é desprezável para este efeito.

Esse ponto mágico permite ao engenheiro genial construir o tal segmento de valor inestimável cujo comprimento "não varia" com a temperatura: *melhor que o ínvar*!

¹ Dentro dum pequeno retângulo centrado num ponto do gráfico da exponencial esse gráfico "confunde-se" com o da tangente.

² Se usar o resto de Taylor de ordem um o erro é dado por: $\alpha^2 t_* \frac{(\alpha(t-t_0))^2}{2!}$, com $0 < t_* < t-t_0$, da ordem portanto de 10^{-14} , para $t-t_0$ da ordem dos cem graus (!), o que dá, para um fio de 1 m, um erro para o comprimento l da ordem de 10^{-11} mm!